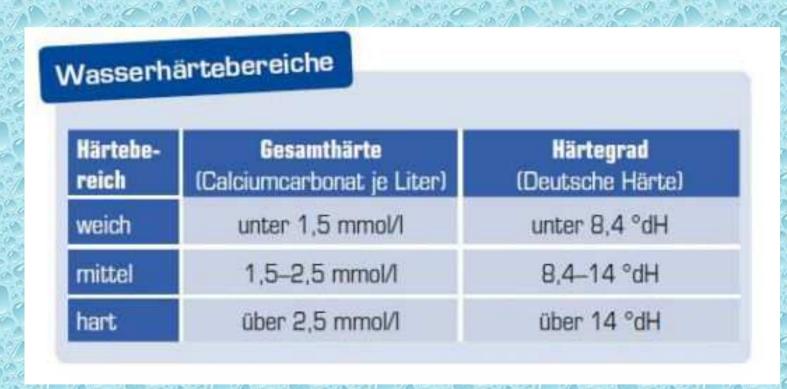


Diskussionsveranstaltung ---"Weiches Wasser - gut für Bovenden!?"

Bovenden 09.05.2016

--- Ralf Kömen
AWIA Umwelt GmbH



GLIEDERUNG

- 1. Wasserhärte
- 2. Inhibitor-Dosierung
- 3. Chlorung

1. Wasserhärte

www.desangosse.de

1. Wasserhärte

Gesamthärte GW Bovenden aus der Bestimmung im August 2015:

Brunnen Osterberg + Weendespring	23,4 °dH	hart
Brunnen Lenglern	25,2 °dH	hart
Quelle Schneebreite	21,0 °dH	hart

Gesamthärte SW Göttingen aus Bestimmungen in 2015/16:

Mischwasser aus 20 % Eigengewinnungen und 80 % Wasser aus der Sösetalsperre (Harzwasserwerke)

6,5-7,0 °dH weich

1. Wasserhärte

Calcium-Gehalte GW Bovenden (August 2015):

Brunnen Osterberg + Weendespring 128 mg/l

Brunnen Lenglern 136 mg/l

Quelle Schneebreite 120 mg/l

Calcium-Gehalte SW Göttingen (Bestimmungen in 2015/16):

Mischwasser aus 20 % Eigengewinnungen und 80 % Talsperrenwasser

(Harzwasserwerke)

35-41 mg/l

1. Wasserhärte

Differenz im Calcium-Gehalt (Bovenden aktuell zu Mischwasser aus Göttingen):

ca. 80-100 mg/l.

1. Wasserhärte

Calcium-Bedarf: empfohlene Tagesmengen in mg

Jugendliche und Erwachsene							
15 bis unter 19 Jahre	1200						
19 bis unter 25 Jahre	1000						
25 bis unter 51 Jahre	1000						
51 bis unter 65 Jahre	1000						
65 Jahre und älter	1000						
Schwangere ^b	1000						
Stillende°	1000						

^aHierbei handelt es sich um einen Schätzwerte.

www.dge.de

bSchwangere < 19 Jahre 1200 mg

[°]Stillende < 19 Jahre 1200 mg

1. Wasserhärte

Die wichtigsten calciumreichen Lebensmittel

200 ml Milch 3,5 % (1 Glas)	240 mg Ca
200 ml Milch 1,5 %	250 mg Ca
200 ml Buttermilch	240 mg Ca
150 g Joghurt (1 kleiner Becher)	170 mg Ca
200 g Speisequark	130 mg Ca
2 Scheiben Emmentaler	612 mg Ca
2 Scheiben Gouda	490 mg Ca
2 Scheiben Edamer	475 mg Ca
2 Scheiben/ 60 g Camenbert	342 mg Ca
200 g Grünkohl	424 mg Ca
200 g Broccoli	220 mg Ca
200 g Lauch	240 mg Ca
200 g Fenchel	218 mg Ca
2 Esslöffel Kräuter	300 – 400 mg Ca
1 Liter Mineralwasser	150 – 600 mg Ca

www.osteoporose.org

2. Inhibitor-Dosierung

Erfordernis:

Weiche Wässer neigen zu erhöhter Korrosion, erkennbar an

- Korrosionsquotient S1, der unter 0,5 liegen sollte (Harzwasser: 2,1; Mischwasser Göttingen: 0,8);
- Pufferungsintensität, die über 0,5 mmol/l liegen sollte (Harzwasser: 0,04 mmol/l, Mischwasser Göttingen: 0,12 mmol/l).

Das Calcitlösevermögen ist nur bedingt aussagekräftig; Grenzwert: + 5 mg/l (Harzwasser: 1,3 mg/l, Mischwasser Göttingen: 2,4 mg/l.

Entfernung der Härtebildner (dezentral oder zentral) führt zu

- Zerstören des Kalk-Kohlensäure-Gleichgewichts;
- Übergang von zugehöriger in aggressíve Kohlensäure mit pH-Wert-Absenkung.

2. Inhibitor-Dosierung

Tabelle 1 – In der Regel erforderliche Zugabemengen

Werkstoff	Behandlungsziel	Silikat	Silikat-Phosphat 2-6 mg/l SiO ₂ und 3-5 mg/l PO ₄		
Eisenwerkstoffe	Sanierung 1)	8-12 mg/l SiO ₂			
	Erhaltung	4-6 mg/l SiO ₂	2-6 mg/l SiO ₂ und 0,2-1 mg/l PO ₄		
Verzinkter Stahl	Sanierung 1)	8-12 mg/l SiO ₂	2-6 mg/l SiO ₂ und 3-5 mg/l PO ₄ 2-6 mg/l SiO ₂ und 0,2-1 mg/l PO ₄		
	Erhaltung	4-6 mg/l SiO ₂			
Kupfer	Sanierung 1)		3-5 mg/l PO ₄		
	Erhaltung	6-12 mg/l SiO, ²⁾	2-6 mg/l SiO, und 0,5-1 mg/l PO,		

¹⁾ Sanierungsmaßnahmen ausschließlich mit Silikaten sind nur in Ausnahmefällen sinnvoll.

www.aquakorin.de

²⁾ Die Erhaltungsdosierung nur mit Silikaten sollte vorher überprüft werden (z. B. Ringsäulenversuch)

2. Inhibitor-Dosierung

Phosphate

Umweltbundesamt

Bekanntmachung der Liste der Aufbereitungsstoffe und Desinfektionsverfahren gemäß § 11 der Trinkwasserverordnung

– 18. Änderung –

(Stand: Oktober 2015)

www.umwelthundesamt.de

2. Inhibitor-Dosierung

Phosphate

Liste der Aufbereitungsstoffe und Desinfektionsverfahren

gemäß § 11 Trinkwasserverordnung

Stand: Oktober 2015, gültig ab Inkrafttreten der Dritten Verordnung zur Änderung der Trinkwasserverordnung

Teil I a

Aufbereitungsstoffe, die als Lösungen oder als Gase eingesetzt werden

www.umweltbundesamt.de

6	- 1	DESTRUCTION OF STREET	AND STREET CAN'T				THE RESERVE OF THE PERSON NAMED IN		STATE CALLS OF A LINE	
	Lfd. Nr.	Stoffname		EINECS- Nummer	Verwendungszweck	Reinheitsanforderungen		Höchstkonzentration nach Abschluss der Aufbereitung ²⁾	Zu beachtende Reaktions- produkte	Bemerkungen
	9	Dikaliummonohydrogenphosphat	7758-11-4	231-834-5	Hemmung der Korrosion, biol. Nitratentfernung	DIN EN 1202 Tab. 1 und 2	2,2 mg/L P		-	-
	10	Dinatriumdihydrogendiphosphat	7758-16-9	231-835-0	Hemmung der Korrosion, biol. Nitratentfernung	DIN EN 1205 Tab. 1 und 2	2,2 mg/L P	-	-	-
	11	Dinatriummonohydrogenphosphat	7558-79-4	231-448-7	Hemmung der Korrosion, biol. Nitratentfernung	DIN EN 1199 Tab. 1 und 2	2,2 mg/L P	-	-	-
	21	Kaliumtripolyphosphat	13845-36-8		Hemmung der Korrosion, Hemmung der Steinablagerung bei dezentraler Anwendung	DIN EN 1211 Tab. 1 und 2	2,2 mg/L P	-	-	
	24	Monocalciumphosphat	7758-23-8	231-837-1	Hemmung der Korrosion, biol. Nitratentfernung	DIN EN 1204 Tab. 1 und 2	2,2 mg/L P	-	-	-
2		Monokaliumdihydrogenphosphat (Kaliumorthophosphat)	7778-77-0	231-913-4	Hemmung der Korrosion, biol. Nitratentfernung	DIN EN 1201 Tab. 1 und 2	2,2 mg/L P	-	-	-
		Mononatriumdihydrogenphosphat (Natriumorthophosphat)	7558-80-7	231-449-2	Hemmung der Korrosion, biol. Nitratentfernung	DIN EN 1198 Tab. 1 und 2	2,2 mg/L P	-	-	-
2000	37	Natriumpolyphosphat	68915-31-1		Hemmung der Korrosion, Hemmung der Steinablagerung bei dezentraler Anwendung,	DIN EN 1212 Tab. 1 und 2 DIN EN 15041	2,2 mg/L P			Umwelt 🙃 Bundesamt
200					Verhinderung der Verblockung von Membranen	2,2 mg/l P ei	ntspre	echen 6,7 n	ng/l PO ₄	www.umweltbundesamt.de

Diskussionsveranstaltung - ,,Weiches Wasser - gut für Bovenden!?"

Bovenden 09.05.2016

--- Ralf Kömen AWIA Umwelt GmbH

2. Inhibitor-Dosierung

2,2 mg/l P entsprechen 6,7 mg/l PO₄

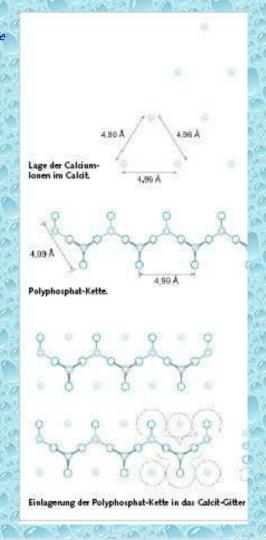
	Lfd. Nr.		Nummer	Nummer			Zugabe	nach Abschluss der Aufbereitung ²)	Reaktions- produkte	Bemerkungen
			7758-29-4	231-838-7		DIN EN 1210 Tab. 1 und 2	2,2 mg/L P			-
8	1000	10 10 10	2/120	No.	PAGE STATE	NEW TOP NOT SEE	1030	100 40 40	10 0 10	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	55	Fetrakaliumdiphosphat	7320-34-5		Hemmung der Korrosion, biol. Nitratentfernung	DIN EN 1207 Tab. 1 und 2	2,2 mg/L P	-	-	-
	56	Fetranatriumdiphosphat	7722-88-5		Hemmung der Korrosion, biol. Nitratentfernung	DIN EN 1206 Tab. 1 und 2	2,2 mg/L P	-	-	-
	57	Trikaliumphosphat	7778-53-2		Hemmung der Korrosion, biol. Nitratentfernung	DIN EN 1203 Tab. 1 und 2	2,2 mg/L P	-	-	-
	58		7601-54-9 10101-89-0		Korrosion, biol. Nitratentfernung	DIN EN 1200 Tab. 1 und 2 bezogen auf das wasserfreie Produkt	2,2 mg/L P	-	-	

www.umweltbundesamt.de

2. Inhibitor-Dosierung

Phosphatierung als Härtestabilisierung:


- Löslichkeit der Härtebildner sinkt mit steigender Temperatur: Calcium- und Magnesium-Hydrogencarbonat wird in Calcium- und Magnesium- Carbonat überführt;
- Hemmung der Steinablagerung bei Gesamthärten zwischen 14 und 21 °dH durch kettenförmige kondensierte Polyphosphate;
- Abscheidung von Calcium- und Magnesium-Carbonat durch Bildung löslicher Komplexverbindungen stark verzögert.


www shz-online de

2. Inhibitor-Dosierung

WWW.SDZ-OI

Diskussionsveranstaltung ---"Weiches Wasser - gut für Bovenden!?"

Bovenden 09.05.2016

--- Ralf Kömen
AWIA Umwelt GmbH

2. Inhibitor-Dosierung

Phosphat-Dosierung in weichem Wasser:

- Anpassung des Deckschichtaufbaus zur Verhinderung einer Wechselwirkung zwischen Trinkwasser und metallischen Werkstoffen;
- Anfangsdosierung nicht unter 3 mg/l PO₄, ideal 3-5 mg/l PO₄; zulässige Zugabe von 2,2 mg/l P entspricht 6,7 mg/l PO₄

2. Inhibitor-Dosierung

Phosphor ist ein essenzieller Mineralstoff:

- Bestandteil der Zellwände (Phospholipide) und Nukleinsäuren (DNS)
- lebenswichtige Rolle im Energiestoffwechsel des Körpers: entscheidend an der Energieproduktion und -speicherung beteiligt
- Phosphor-Mangel führt in jedem Alter zu Gewichtsverlust, Knochenabbau und Müdigkeit
- Über- und Unterversorgung mit Phosphat (Hyper-/Hypophosphatämie) sind losgelöst von Phosphat-Gehalten im Trinkwasser zu betrachten

2. Inhibitor-Dosierung

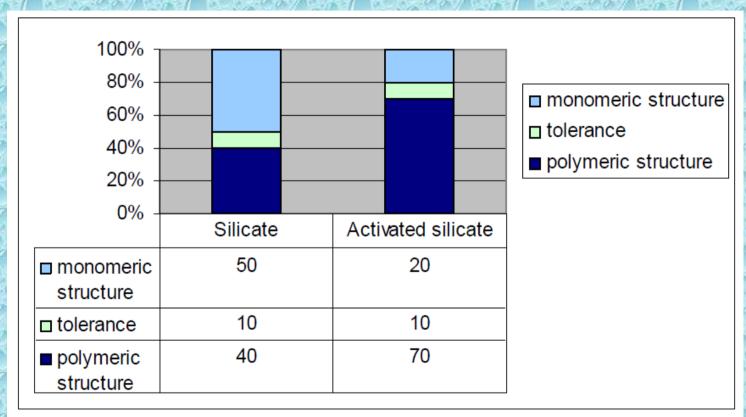
- Phosphor-Bedarf: empfohlene Tagesmenge ca. 700 mg;
- Phosphor ist in fast allen Lebensmitteln enthalten; besonders gute Quellen sind eiweißhaltige Produkte, Nüsse, Hülsenfrüchte, Obst und Gemüse;
- Tagesration enthalten in:
 - · 55 g Weizenkleie
 - · 120 q Sojabohnen
 - · 120 g Gouda (30 % Fett)
 - 160 g Ölsardinen
 - 170 g Linsen
 - · 180 g weiße Bohnen
 - · 350 g Mischbrot
 - · 390 g Schweinebraten
 - 760 g Joghurt (3,5 % Fett)
 - · 1400 g Kohlrabi

Phosphor-Gehalt im Körper: ca. 700 g (entspricht ca.
 2.1 kg Phosphat)

www.aesundheit.de

2. Inhibitor-Dosierung

Silikate


Lf	d. Nr.			EINECS- Nummer	Verwendungszweck	_	Zugabe	Zu beachtende Reaktions- produkte	Bemerkungen
4	38	Natriumsilikat	1344-09-8	215-687-4	Hemmung der Korrosion	- /	15 mg/L SiO ₂	-	Einsatz nur in Mischung mit hier gelisteten Phosphaten, Natriumhydroxid, Natriumcarbonat oder Natriumhydrogencarbonat

www.umweltbundesamt.de

- Silikat-Gehalt im Mischwasser Göttingen: ca. 12-14 mg/l (Harzwasser weist bereits ca. 6 mg/l Silikat auf); Zudosierung ca. 6 mg/l.

2. Inhibitor-Dosierung

Vergleich der Vernetzung von Silikaten durch die Carbonataktivierung

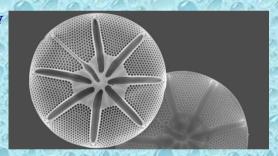
www aquakorin de

2. Inhibitor-Dosierung

Silikate

- Salze und Ester der ortho-Kieselsäure (Si(OH₄)) und mit Ausnahme der Alkalisilikate unlöslich in Wasser;
- die Erdkruste besteht zu 90 %, der Erdmantel fast vollständig aus Silikaten; mit 50-60 Vol.-% häufigstes Silikat: Feldspat; weitere: Tonminerale, Glimmer, Granat, Olivin;
- alle erdähnlichen Planeten bestehen zum größten Teil aus Silikaten;
- das Mineral Quarz (SiO₂), eigentlich ein Oxid, wird im Angloamerikanischen ebenfalls zu den Silikaten gezählt;

www.wieland-naturstein.de


2. Inhibitor-Dosierung

Silikate

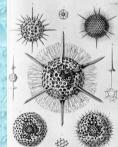
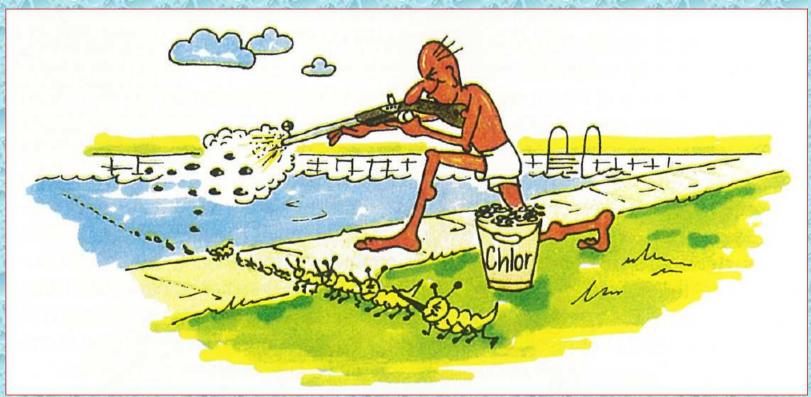

- Silikate kommen in allen Wässern in geringer Konzentration vor;
- Bestandteil des kieseligen Gerüsts mancher Schwämme; Hauptproduzenten: Kieselalgen (Diatomeen) und Strahlentierchen (Radiolarien);

Bild: Friedel Hinz, AWI

www.sezession.de

- technische Silikate: z. B. Gläser und Glaskeramiken, Wassergläser als Füllstoff in der Papierindustrie u. a.;
- als Korrosionsinhibitor kommen Silikat-Phosphat-Gemische oder phosphatfreie carbonataktivierte Silikate zur Anwendung

2. Inhibitor-Dosierung


Silizium

- Silizium-Gehalt im Körper: ca. 1.000 mg, Abnahme mit dem Alter;
- essenzielle Funktion beim Knochenaufbau wird diskutiert (in Tierversuchen nachgewiesen);
- Unterstützung der Aluminium-Ausscheidung beobachtet.

3. Chlorung

Wirkungsweise von Chlor in der Desinfektion

aus: "Das Schwimmbad und der Hot-Whirl-Pool", Lovibond-Handbuch, Hrsg. Titrometer GmbH, Dortmund

3. Chlorung

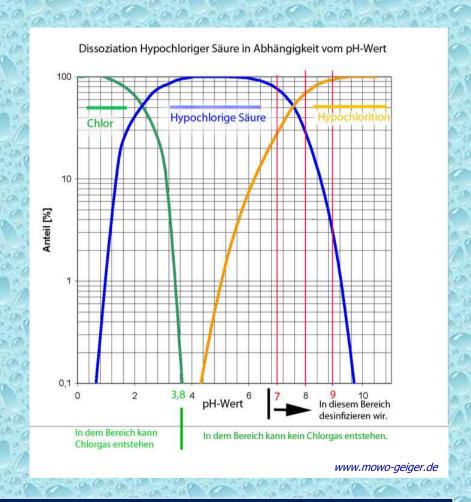
Wirkung

- sehr starkes Oxidations- und Desinfektionsmittel;

- weltweit größter Anteil unter den angewandten Desinfektionsverfahren

(andere: UV, Ozon, Membranfiltration);

- Prinzip: Oxidation der mit Chlor reagierenden Stoffe; Durchdringen und Degenerieren der Zellmembran sowie Störung oder Unterbrechung des Stoffwechsels der Mikroorganismen.


aus: "Das Schwimmbad und der Hot-Whirl-Pool", Lovibond-Handbuch, Hrsg. Titrometer GmbH, Dortmund

3. Chlorung

Wirkung

- Cl₂ nur bei pH-Werten < 3 stabil;
- im Trinkwasser- und Badebeckenwasser-pH-Bereich überwiegend HClO als für die Desinfektion maßgebliche Komponente;
- HClO-Anteil bei pH 6,0: 96,8 %, pH 7,0: 75,2 %, pH 8,0: 23,2 %, pH 9,0: 2,9 %.

3. Chlorung

Liste der Aufbereitungsstoffe und Desinfektionsverfahren

gemäß § 11 Trinkwasserverordnung

Stand: Oktober 2015, gültig ab Inkrafttreten der Dritten Verordnung zur Änderung der Trinkwasserverordnung

Teil I c

Aufbereitungsstoffe, die zur Desinfektion des Wassers eingesetzt werden

www.umwelthundesamt.de

www.umweltbundesamt.de

Liste der Aufbereitungsstoffe und Desinfektionsverfahren gemäß \S 11 Trinkwasserverordnung 2001

			Teil I c: A	ufbereitungsstoffe, die zu	r Desinfekti	on des Wassers eingese	tzt werden	
Stoffname	CAS- Nummer	EINECS- Nummer	Verwendungszweck	Reinheitsanforderungen	Zulässige Zugabe	Konzentrationsbereich nach Abschluss der Aufbereitung ²⁾	Zu beachtende Reaktionsprodukte	Bemerkungen
Calciumhypochlorit	7778-54-3	231-908-7	Desinfektion	DIN EN 900 Tab. 1: Typ1	1,2 mg/L freies Cl ₂	max. 0,3 mg/L freies Cl ₂ min. 0,1 mg/L freies Cl ₂	Trihalogenmethane, Bromat	Zusatz bis zu 6 mg/L freies Cl ₂ und Gehalte bis 0,6 mg/L freies Cl ₂ nach der Aufbereitung bleiben außer Betracht, wenn anders die Desinfektion nicht gewährleistet werden kan oder wenn die Desinfektion zeitweise durch Ammonium beeinträchtigt wird
Chlor	7782-50-5	231-959-5	Desinfektion, Herstellung von Chlordioxid	DIN EN 937 Tab. 1 Bei Herstellung des Chlor nach dem Amalgam- Verfahren: Hg-Gehalt max. 0,1 mg/kg Cl ₂	1,2 mg/L freies Cl ₂	max. 0,3 mg/L freies Cl ₂ min. 0,1 mg/L freies Cl ₂	Trihalogenmethane	Zusatz bis zu 6 mg/L freies Cl ₂ und Gehalte bis 0,6 mg/L freies Cl ₂ nach der Aufbereitung bleiben außer Betracht, wenn anders die Desinfektion nicht gewährleistet werden kan oder wenn die Desinfektion zeitweise durch Ammonium beeinträchtigt wird
Chlordioxid	10049-04-4	233-162-8	Desinfektion	DIN EN 12671 Nur Angaben zu den Ausgangsstoffen (EN 937, 938, 939, 12678, 12926)	0,4 mg/L CIO ₂	max. 0,2 mg/L ClO ₂ min. 0,05 mg/L ClO ₂	Chlorit	Ein Höchstwert für Chlorit von 0,2 mg/L CIO nach Abschluss der Aufbereitung muss eingehalten werden. Der Wert für Chlorit gilt als eingehalten, wenn nicht mehr als 0,2 mg/L Chlordioxid zugegeben werden. Möglichkeit von Chloratbildung beachten
Natriumhypochlorit	7681-52-9	231-668-3	Desinfektion	DIN EN 901 Tab. 1: Typ 1 Grenzwert für Verunrei- nigungen mit Chlorat (NaClO ₃): < 5,4 % (m/m) des Aktivchlors	1,2 mg/L freies Cl ₂	max. 0,3 mg/L freies Cl ₂ min. 0,1 mg/L freies Cl ₂	Trihalogenmethane, Bromat	Zusatz bis zu 6 mg/L freies Cl ₂ und Gehalte bis 0,6 mg/L freies Cl ₂ nach der Aufbereitung bleiben außer Betracht, wenn anders die Desinfektion nicht gewährleistet werden kan oder wenn die Desinfektion zeitweise durch Ammonium beeinträchtigt wird
Ozon	10028-15-6	233-069-2	Desinfektion, Oxidation	DIN EN 1278 Anhang A.3.2	10 mg/L O ₃	≤ 0,05 mg/L O ₃	Trihalogenmethane, Bromat	Siehe auch Liste Teil I a

Diskussionsveranstaltung ---,,Weiches Wasser - gut für Bovenden!?"

Bovenden 09.05.2016

--- Ralf Kömen
AWIA Umwelt GmbH

3. Chlorung

Liste der Aufbereitungsstoffe und Desinfektionsverfahren

gemäß § 11 Trinkwasserverordnung

Stand: Oktober 2015,

gültig ab Inkrafttreten der Dritten Verordnung zur Änderung der Trinkwasserverordnung

Teil II

Desinfektionsverfahren

www.umwelthundesamt.de

	Teil II: Desinfektionsverfahren											
Desinfektionsverfahren 5)	Verwendungszweck	Technische Regeln	Mindesteinwirkdauer	Anforderungen an das Verfahren	Bemerkungen							
UV-Bestrahlung (240-290 nm)	Desinfektion	DVGW-Arbeitsblätter W 294-1, W 294-2, W 294-3	Anlagenspezifisch	Es sind nur UV-Desinfektionsgeräte zulässig, für die nach DVGW W294-2 (A) eine Desinfektionswirksamkeit von mindestens 400 Joule/m² (bezogen auf 254 nm) erfolgreich nachgewiesen wurde. Die für das jeweilige Gerät im Prüfbericht sowie im DVGW-Zertifikat angegebenen Betriebskennwerte (max. Durchfluss und zugehörige Mindestbestrahlungsstärke) sind im Betrieb einzuhalten.	Das Desinfektionsverfahren ist nicht anwendbar für die Aufrechterhaltung einer Desinfektionskapazität im Verteilungsnetz (vgl. § 5 Absatz 5 Satz 2 TrinkwV 2001).							
Dosierung von Chlorgaslösungen	Desinfektion	DVGW-Arbeitsblätter W 296, W 623	-	Einsatz erweiterter Vakuumchlorgasdosieranlagen	Bei Einsatz des Verfahrens außerhalb des Wasser- werkes ist auf die Einhaltung des Grenzwertes für Trihalogenmethane (THM) beim Verbraucher zu achten							
Dosierung von Natrium- und Calciumhypochlorit- Lösung	Desinfektion	DVGW-Arbeitsblätter W 296, W 623	-	-	Bei Einsatz des Verfahrens außerhalb des Wasser- werkes ist auf die Einhaltung des Grenzwertes für Trihalogenmethane (THM) beim Verbraucher zu achten							
Elektrolytische Herstellung und Dosierung von Chlor vor Ort	Desinfektion	DVGW-Arbeitsblätter W 296, W 623, W 229	-	-	Bei Einsatz des Verfahrens außerhalb des Wasser- werkes ist auf die Einhaltung des Grenzwertes für Trihalogenmethane (THM) beim Verbraucher zu achten							
Dosierung einer vor Ort hergestellten Chlordioxidlösung	Desinfektion	DVGW-Arbeitsblätter W 224, W 624	-	-	-							
	Desinfektion, Oxidation	DVGW-Arbeitsblätter W 225, W 296, W 625	-	-	Bei Einsatz des Verfahrens außerhalb des Wasserwerkes ist auf die Einhaltung des Grenzwertes für Trihalogenmethane (THM) beim Verbraucher zu achten. Das Desinfektionsverfahren ist nicht anwendbar für die Aufrechterhaltung einer Desinfektionskapazität im Verteilungsnetz (vgl. § 5 Absatz 5 Satz 2 TrinkwV 2001).							

Legende:

Bei Einsatz der Verfahren für die Desinfektion von Oberflächenwasser oder von durch Oberflächenwasser beeinflusstem Wasser ist auf eine weitestgehende Partikelabtrennung vor der Desinfektion zu achten. Dabei sind Trübungswerte im Ablauf der partikelabtrennenden Stufe im Bereich von 0,1 - 0,2 FNU anzustreben, wenn möglich zu unterschreiten. Auf die Mitteilung des Umweltbundesamtes: "Anforderungen an die Aufbereitung von Oberflächenwässern zu Trinkwasser im Hinblick auf die Eliminierung von Parasiten" (veröffentlicht im Bundesgesundheitsblatt 12/97) wird ausdrücklich hingewiesen.

- keine www.umweltbundesamt.de

3. Chlorung

Anwendungs-Konzentrationen (Beispiel: Natriumhypochlorit bzw. Chlordioxid)

Trinkwasser (TrinkwV 2001, § 11)

- zulässige Zugabe an freiem Chlor (Hypochlorit): 1,2 mg/l (max. 6 mg/l*), (bei Chlordioxid: 0,4 mg/l);
- freies Chlor nach Abschluss der Aufbereitung (Hypochlorit): 0,1-0,3 mg/l (max. 0,6 mg/l*), (bei Chlordioxid: max. 0,2 mg/l);

*wenn die Desinfektion anders nicht zu gewährleisten ist oder wenn sie zeitweise durch Ammonium beeinträchtigt wird

Diskussionsveranstaltung ---"Weiches Wasser - gut für Bovenden!?"

Bovenden 09.05.2016

--- Ralf Kömen
AWIA Umwelt GmbH